Shape optimization in problems governed by generalised Navier – Stokes equations : existence analysis
نویسندگان
چکیده
Abstract: We study a shape optimization problem for a paper machine headbox which distributes a mixture of water and wood fibers in the paper manufacturing process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalised Navier-Stokes system with nontrivial boundary conditions. The objective of this paper is to prove the existence of an optimal shape.
منابع مشابه
Shape optimization for stationary Navier -
Abstract: This work discusses geometric optimization problems governed by stationary Navier-Stokes equations. Optimal domains are proved to exist under the assumption that the family of admissible domains is bounded and satisfies the Lipschitz condition with a uniform constant, and in the absence of the uniqueness property for the state system. Through the parametrization of the admissible shap...
متن کاملShape optimization for surface functionals in Navier-Stokes flow using a phase field approach
We consider shape and topology optimization for fluids which are governed by the Navier–Stokes equations. Shapes are modelled with the help of a phase field approach and the solid body is relaxed to be a porous medium. The phase field method uses a Ginzburg–Landau functional in order to approximate a perimeter penalization. We focus on surface functionals and carefully introduce a new modelling...
متن کاملOptimal Control of Navier - Stokes Equations 1
In this paper we study optimal control problems of the uid ow governed by the Navier-Stokes equations. Two control problems are formulated in the case of the driven cavity and ow through a channel with sudden expansion and solved successfully using a numerical method based on the augmented Lagrangian method. Existence and rst order optimality condition of the optimal control are established. A ...
متن کاملInstability of an Inverse Problem for the Stationary Navier-Stokes Equations
This paper provides a theoretical study of the detection of an object immersed in a fluid when the fluid motion is governed by the stationary Navier-Stokes equations with non homogeneous Dirichlet boundary conditions. To solve this inverse problem, we make a boundary measurement on a part of the exterior boundary. First, we present an identifiability result. We then use a shape optimization met...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کامل